Skip to main content

Sealed Lead Acid (SLA) 12V Battery Charger with Current Limiting

This is the circuit design of Smart Sealed Lead Acid (SLA) 12V Battery Charger featuretwith Current Limiting. The charger uses a two step process for charging SLA batteries – a current limited ‘fast’ mode followed by a constant voltage ‘float’ mode. Maximum charging current is 1A.

An onboard LED indicates when the charger is in ‘fast’ mode. When the LED goes out the battery is charged and the charger has switched to ‘float’ mode.

The best way to charge a Sealed Lead Acid (SLA) battery is with a current limited voltage regulator, allowing fast charging while limiting heat buildup and gassing. SLA batteries are made up of 2V (nominal) cells.

Therefore a 12V battery has 6 cells. The following parameters were used for this charger:

  1. The charging current should be approximately 0.1 times the battery capacity. So, a 10Ah battery should be charged with a 1A current (10 x 0.1 = 1). This helps to ensure battery life.
  2. The charging voltage is 2.45V per cell = 14.7V
  3. Float charging voltage is 2.275V per cell = 13.65V

How Sealed Lead Acid (SLA) 12V Battery Charger Works

This two step battery charger works as follows:
  • Step 1. Charging starts at the maximum current limit. The battery terminal voltage will gradually increase until it reaches the regulator set voltage.
  • Step 2. As the battery becomes fully charged the current will start to decrease. When the charging current drops to around 140mA (see later) the regulator voltage is decreased to a safe float voltage at which the battery can be left on indefinitely.

Complete PDF document Smart Sealed Lead Acid (SLA) 12V Battery Charger can be downloaded from the following link:
Download File


Popular posts from this blog

LM317T Voltage Regulator Circuit with Pass Transistor

This is the schematic diagram of voltage regulator circuit with pass transostor. The regulator is based regulator IC of LM317T. The LM317T output current can be raised by utilizing an additional power transistor (on circuit, it is 2N2955) to share a portion of the total current. The amount of current sharing is established with a resistor placed in series with the LM317 input and a resistor placed in series with the emitter of the pass transistor.

In the above scheme design, the pass transistor will start conducting when the LM317 current reaches about 1 ampere, due to the voltage drop across the 0.7 ohm resistor. Current limiting happens at about 2 amperes for the LM317 which will drop about 1.4 volts across the 0.7 ohm resistor and make a 700 millivolt drop across the 0.3 ohm emitter resistor. Thus the total current is limited to about 2+ (.7/.3) = 4.3 amperes.

Unregulated Dual Polarity Power Supply

This is the schematic diagram of Unregulated Dual Polarity power supply.

Unlike 78xx and 79xx dual polarity regulated power sypply and LM317/LM337 dual polarity regulated power supply which have limited current output and voltage (have limited supply power), this unregulated power supply will give you more power.

This kind of circuit usually used for power amplifier which need high supply power, or as high current lead acid battery charger (single polarity only).

The component value is flexible refer to your needs. For example: if you need power supply for 100W amplifier, then the component value are:
Transformer: 3A minimum (center tap)
Diodes: 3A diode (1N5401, 1N5402, 1N5403 etc)Electrolytic capacitor: 4x minimum of 4700uF/50V (the higher is better - check the capacitor voltage, change it for higher voltage. example: use 63V capacitors for 45V power supply output.)

Solid State Tesla Coil with 555 Timer

Here the circuit diagram of solid state tesla coil with 555 timer.

Single transistor flyback driver induced a lot of complications on account of it really is operating principle. I received e-mails from those who had been unable to obtain it functional even after they are positive that their flyback and transistor is Okay. Moreover, because it is resonance frequency is determined by each individual a part of the method, any time you seek to draw an arc in the transformer, it alterations substantially in a lot of the circumstances. Simply because the operating frequency is vital for your security criteria, (each for mine and electrical power transistor's), I determined to generate it run on a continuous frequency and developed up yet another easy circuit, attempting to keep within the specified limits in the 555 timer.