Skip to main content

Variable Power Supply

Here a variable power supply circuit which the output voltage can be adjusted. The stabilizer IC may be changed with different value as needed, example 7815 for 15v maximum voltage.

Variable Power Supply circuit diagram


Component Parts List:
T1 Transformer 10:1 Secondary 24V @ 2A
BR1 Bridge Rectifier 50V PIV 2A rating
C1 4700u (35V)
C2 0.001u
C3 2200u (35V)
C4 0.001u
C5 4.7u (25)
C6 0.01u
R1 10k potentiometer
L1 see text
U1 7805 N.B. This may be changed for different output voltages e.g. 7812 for higher output voltage
ZD1 15V zener @ 1.3W

The specific inductance of the ferrite (core)is important. A core should be chosen to work within the specific frequency as stated by the manufacturer. L1 is a powder core and has 32 turns of 0.75mm wire.

The transformer has a 240V primary and has a secondary rated 24V at 2A. The bridge rectifier contains 4 diodes, their current rating needs to be high with respect to the transformers output current; if not the current may damage the diodes. C1 is the mainfiltering capacitor, the supply is further smoothed by the combination of L1 and C3. C2 and C4 are decoupling capacitors; their action further reduce ripple factor.

The regulator, U1 utilizes the action of zener diode ZD1 which is in parallel with the potentiometer, R1. The tuning action of R1 produces a variable regulator output. The output voltage is variable from the regulator output to the regulator output plus the zener voltage. E.G. A 7805 regulator and 10V zener give an output adjustable from 5 to 15 Volts. The regulator may be changed to provide different output voltages as may the zener. the zener should be rated a minimum of 1.3 Watts.

Comments

Popular posts from this blog

LM317T Voltage Regulator Circuit with Pass Transistor

This is the schematic diagram of voltage regulator circuit with pass transostor. The regulator is based regulator IC of LM317T. The LM317T output current can be raised by utilizing an additional power transistor (on circuit, it is 2N2955) to share a portion of the total current. The amount of current sharing is established with a resistor placed in series with the LM317 input and a resistor placed in series with the emitter of the pass transistor.


In the above scheme design, the pass transistor will start conducting when the LM317 current reaches about 1 ampere, due to the voltage drop across the 0.7 ohm resistor. Current limiting happens at about 2 amperes for the LM317 which will drop about 1.4 volts across the 0.7 ohm resistor and make a 700 millivolt drop across the 0.3 ohm emitter resistor. Thus the total current is limited to about 2+ (.7/.3) = 4.3 amperes.

Unregulated Dual Polarity Power Supply

This is the schematic diagram of Unregulated Dual Polarity power supply.


Unlike 78xx and 79xx dual polarity regulated power sypply and LM317/LM337 dual polarity regulated power supply which have limited current output and voltage (have limited supply power), this unregulated power supply will give you more power.

This kind of circuit usually used for power amplifier which need high supply power, or as high current lead acid battery charger (single polarity only).

The component value is flexible refer to your needs. For example: if you need power supply for 100W amplifier, then the component value are:
Transformer: 3A minimum (center tap)
Diodes: 3A diode (1N5401, 1N5402, 1N5403 etc)Electrolytic capacitor: 4x minimum of 4700uF/50V (the higher is better - check the capacitor voltage, change it for higher voltage. example: use 63V capacitors for 45V power supply output.)

Solid State Tesla Coil with 555 Timer

Here the circuit diagram of solid state tesla coil with 555 timer.

Single transistor flyback driver induced a lot of complications on account of it really is operating principle. I received e-mails from those who had been unable to obtain it functional even after they are positive that their flyback and transistor is Okay. Moreover, because it is resonance frequency is determined by each individual a part of the method, any time you seek to draw an arc in the transformer, it alterations substantially in a lot of the circumstances. Simply because the operating frequency is vital for your security criteria, (each for mine and electrical power transistor's), I determined to generate it run on a continuous frequency and developed up yet another easy circuit, attempting to keep within the specified limits in the 555 timer.