Lithium-ion (Li-ion) Battery Charger with MAX1879






Lithium-ion (Li-ion) Battery Charger with MAX1879

Above diagram is the circuit of Lithium-ion (Li-ion) battery charger which built based single chip MAX1879. This is the simple and low cost battery charger for single-cell Li+ battery that does not dissipate power (no heat.

The MAX1879, in conjunction with the AC linear transformer adapter and a PMOS FET, allows safe and fast charging of a single Li+ cell. The MAX1879 is not only an inductorless required solution, but also the lowest power dissipated solution among single-cell Li+ battery chargers.

The MAX1879 with a current limited linear wall adapter can produce the most economic and efficient solution for the single-cell Li+ off-line cradle charger, with virtually no power loss on the PMOS FET. It can be easily designed for handheld devices or battery packs without excessive power dissipation and heat problems.

Read detailed explanation about this Lithium-ion (Li-ion) battery charger circuit at maxim-ic.com

About MAX1879:
The MAX1879 single-cell lithium-ion (Li+) battery charger utilizes an efficient pulse-charging architecture to minimize power dissipation in portable devices. This architecture combines the efficiency of switch-mode chargers with the low cost and simplicity of linear chargers. This simple device, in conjunction with a current-limited wall cube and a PMOS transistor, allows safe and fast charging of a single Li+ cell.

MAX1879 Features:
  • Low Electronic Component Count, No Inductor
  • Simple Design Minimizes Heat
  • 0.75% Accurate Battery Regulation
  • 1.5µA (max) Battery Current Drain with Wall Cube Removed
  • Restart Charging at 4.0V
  • Battery-Full Indicator
  • Safely Precharges Near-Dead Cells
  • Automatic Power-Down when Power Source is Removed
  • Continuous Overvoltage and Overtemperature Protection
  • Charges 1 Cell from as Low as 4.5V
  • Pin-Compatible Upgrade to MAX1679
Download MAX1879 datasheet

About Power Supply
A power supply is a device that supplies electrical energy to one or more electric loads. The term of "power supply" is most commonly applied to devices that convert one form of electrical energy to another, though it may also refer to devices that convert another form of energy (e.g., mechanical, chemical, solar) to electrical energy.
A power supply may be implemented as a discrete, stand-alone device or as an integral device that is hardwired to its load. In the latter case, for example, low voltage DC power supplies are commonly integrated with their loads in devices such as computers and household electronics. More explanation about power supply can be found at wikipedia.org

This is the tutorial about "How to build an AC to DC power supply ". The video tutorial covers the basics of diodes, bridge rectifiers, and how to build simple unregulated AC to DC power supplies than can handle a few mA up to several Amps.

Watch the video:

0 comments: