Skip to main content

Electronic Power Controller Circuit

Electronic Power Controller Circuit diagram


This is an electric power controller which implemented the bidirectional triode thyristor(TRIAC). This circuit can manage the electrical power using the a single variable resistor.

This circuit is applied for the dimmer which adjusts the light from the bulb. This circuit adjusts the quantity of the electrical current which flows via the load together with the bidirectional triode thyristor and controls the electric power. It truly is only the alternating voltage that may be controlled with this circuit and it is impossible to perform the control in the DC voltage.

Simply because it controls the passing time in the alternating current by the bidirectional triode thyristor, the electrical current which flows via the load is not the clean sine wave type. Due to the fact it's, there is limitation in the equipment which may be controlled with this circuit. The bidirectional triode thyristor is usually called by the trade name TRIAC.

The equipment which can be controlled
  • The equipment which works by the resistance. Such as the the tungsten-filament lamp, the soldering iron and so on.
  • The equipment which is using the AC series motor(with the brush). Such as the drill, the electric fan, the cleaner and so on.

The equipment which can not do the control
  • The fluorescence light.
  • The synchronous motor(using the capacitor)


Detailed Electronic Power Controller Circuit project: http://www.piclist.com/images/www/hobby_elec/e_ckt24.htm

Comments

Popular posts from this blog

LM317T Voltage Regulator Circuit with Pass Transistor

This is the schematic diagram of voltage regulator circuit with pass transostor. The regulator is based regulator IC of LM317T. The LM317T output current can be raised by utilizing an additional power transistor (on circuit, it is 2N2955) to share a portion of the total current. The amount of current sharing is established with a resistor placed in series with the LM317 input and a resistor placed in series with the emitter of the pass transistor.


In the above scheme design, the pass transistor will start conducting when the LM317 current reaches about 1 ampere, due to the voltage drop across the 0.7 ohm resistor. Current limiting happens at about 2 amperes for the LM317 which will drop about 1.4 volts across the 0.7 ohm resistor and make a 700 millivolt drop across the 0.3 ohm emitter resistor. Thus the total current is limited to about 2+ (.7/.3) = 4.3 amperes.

Unregulated Dual Polarity Power Supply

This is the schematic diagram of Unregulated Dual Polarity power supply.


Unlike 78xx and 79xx dual polarity regulated power sypply and LM317/LM337 dual polarity regulated power supply which have limited current output and voltage (have limited supply power), this unregulated power supply will give you more power.

This kind of circuit usually used for power amplifier which need high supply power, or as high current lead acid battery charger (single polarity only).

The component value is flexible refer to your needs. For example: if you need power supply for 100W amplifier, then the component value are:
Transformer: 3A minimum (center tap)
Diodes: 3A diode (1N5401, 1N5402, 1N5403 etc)Electrolytic capacitor: 4x minimum of 4700uF/50V (the higher is better - check the capacitor voltage, change it for higher voltage. example: use 63V capacitors for 45V power supply output.)

Solid State Tesla Coil with 555 Timer

Here the circuit diagram of solid state tesla coil with 555 timer.

Single transistor flyback driver induced a lot of complications on account of it really is operating principle. I received e-mails from those who had been unable to obtain it functional even after they are positive that their flyback and transistor is Okay. Moreover, because it is resonance frequency is determined by each individual a part of the method, any time you seek to draw an arc in the transformer, it alterations substantially in a lot of the circumstances. Simply because the operating frequency is vital for your security criteria, (each for mine and electrical power transistor's), I determined to generate it run on a continuous frequency and developed up yet another easy circuit, attempting to keep within the specified limits in the 555 timer.